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Abstract—In this paper we present novel detection schemes
for non-antipodal signaling based cooperative spectrum sensing
in multiple-input multiple-output (MIMO) cognitive radio (CR)
networks, which are robust against the uncertainty in channel
estimates. We consider a scenario in which the secondary users
(SU) cooperate by reporting the sensed data to the fusion center
for soft combining towards primary user (PU) detection. We
formulate this problem employing the optimal linear discriminant
and model the uncertainties in the channel state information
(CSI) as ellipsoidal uncertainty sets. It is then demonstrated
that this problem of PU detection with uncertainty in the
channel estimates for cooperative spectrum sensing in a CR
system can be formulated as second order cone program (SOCP).
Further, we extend this paradigm to the associated relaxed robust
detector (RRD) and multicriterion robust detector (MRD) that
maximally separate the hypothesis ellipsoids in low signal-to-
noise power (SNR) and deep fade channel conditions. We present
a closed form solution for the proposed robust detector for the
above MIMO cooperative spectrum sensing scenario. Simulation
results demonstrate a significant improvement in the detection
performance of the proposed uncertainty aware robust detection
schemes in comparison to the conventional uncertainty agnostic
matched filter detector for cooperative MIMO PU detection.

Index Terms—CR, Cooperative spectrum sensing, SOCP.

I. INTRODUCTION

COGNITIVE radio (CR) systems [1] enhance the ef-
ficiency of spectrum utilization by allowing a set of

unlicensed/secondary users (SU), opportunistic access of the
vacant spectral bands. Hence, it is imperative for the SUs in
CR systems to reliably sense the wireless channel towards
detection of weak primary user (PU) signals [2], thus avoiding
interference to the licensed users. Several spectrum sensing
techniques [3], [4] have been proposed in existing literature
and these can be broadly classified as being local or coop-
erative in nature. It has been demonstrated that cooperative
schemes result in a superior detection performance compared
to local techniques since the former possess the ability to
overcome the wireless impairments of shadowing, fading
and hidden terminals, thus improving the sensing reliability.
Amongst such cooperative schemes, soft-decision based max-
imal ratio combining [5] has been demonstrated to achieve
the lowest detection error. However, its performance depends
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critically on the accuracy of the channel state information
(CSI) available. Obtaining perfect CSI in multiuser wireless
communication scenario is a challenging task due to the time
varying nature of the wireless channel. Hence, optimistically,
it is only possible to obtain nominal channel estimates in
practical wireless systems.

In this context we present a class of optimal detectors for
non-antipodal signaling based multiple-input multiple-output
(MIMO) cooperative spectrum sensing scenarios considering
uncertainty in the available channel estimates. We model
the inaccuracies in the channel coefficients as ellipsoidal
uncertainty sets centered at the nominal channel estimates.
It is demonstrated that the problem of optimal PU detection
can be formulated as a second order cone program (SOCP).
We describe a closed form solution for the proposed robust
detector. Subsequently we also present the allied relaxed robust
detector (RRD) and multicriterion robust detector (MRD) for
PU detection in adverse deep fade and CSI uncertainty sce-
narios. Simulation results demonstrate that the proposed robust
cooperative detectors have a significantly superior performance
compared to the conventional matched filter (MF) detector.

The rest of the paper is organized as follows. Section II
describes the system model for cooperative spectrum sensing
in MIMO CR wireless networks followed by the uncertainty
model for the channel estimates. In Section III we formulate
the proposed robust detectors for cooperative spectrum sensing
in CR networks. Simulation results are presented in Section
IV and we conclude with Section V.

II. SYSTEM MODEL

We consider a CR network consisting of a PU base-station
with Nt transmit antennas and N cooperating SUs with
each SU having Nr receive antennas. The baseband system
model of the wireless multiuser MIMO CR system for the kth

transmitted symbol vector is given as,

yi(k) = Hix (k) + ηi (k) , (1)

where yi(k) ∈ CNr×1 is the received signal vector at the ith

SU corresponding to the PU base-station broadcast beacon
vector x (k) ∈ CNt×1. The additive white Gaussian noise
(AWGN) vector ηi (k) ∈ CNr×1 of ith SU at time instant k
has covariance E

{
ηi (k)ηi (k)

H
}

= σ2INr . Each complex
element hi (r, t) of the MIMO channel matrix Hi∈ CNr×Nt

denotes the fading channel coefficient between the tth transmit
antenna of the PU base-station and the rth receive antenna of



the ith SU. Let the concatenated channel matrix H∈CNNr×Nt

corresponding to N cooperating SUs be defined as,

H =


H1

H2

...
HN

 .

The fusion center receives the measurements yi(k), 1≤ i≤N
from the N SUs and jointly processes the collected data
towards PU presence or spectral hole detection. Hence the
above system model at the fusion center can be described as,

y (k) = Hx (k) + η (k) , (2)

where y(k)=[y1(k)
T , . . . ,yN (k)T ]T∈CNNr×1 denotes the

concatenated fusion center signal corresponding to the PU
base-station broadcast beacon signal x (k)∈CNt×1 and the
vector η(k)=[η1(k)

T , . . . ,ηN (k)T ]T denotes the concate-
nated receiver noise vector. Consider a scenario in which the
PU base-station transmits the non-antipodal beacons p0,p1∈
CNt×1 to indicate the absence or presence of the licensed
PU respectively. For example, in practical cellular scenarios
p0=0 corresponds to the absence of primary transmission and
p1 corresponds to the broadcast signal of the base-station.
Define the vector hi∈CNNr×1, for i=0, 1 as hi=Hpi. The PU
detection problem can be formulated as the binary hypothesis
testing problem,

H0 :y (k) = h0 + η (k)

H1 :y (k) = h1 + η (k) , (3)

with the null hypothesis H0 and alternative hypothesis H1

denoting the absence and presence of the PU respectively.
The optimal detector that minimizes the detection error for
the above AWGN scenario is the standard MF detector [6]
that optimally separates the two hypothesis. In this context,
the recent progress in convex optimization has led to the
development of powerful techniques for computation of the
optimal linear discriminant that are described in detail in [7].
Thus the optimal hyperplane that separates the two competing
hypothesis, defined by the normal vector w, can be formulated
as the solution of the equivalent convex optimization frame-
work towards the optimal linear discriminant computation,

minimize ∥w∥2
subject to wHh0 + z ≤ −1

wHh1 + z ≥ 1, (4)

where z ∈ C is a constant. The above convex program
presents a novel reformulation of the standard optimal binary
detection problem, and yields a framework which forms the
basis for the development of more sophisticated detectors
in challenging scenarios employing convex optimization. In
practical wireless scenarios it is frequently not possible to
obtain accurate CSI due to the fast fading nature of the wireless
channel coupled with the high noise floor, limited feedback
and other impediments in wireless receivers. In such scenarios
one can model the CSI uncertainty in the nominal channel
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Fig. 1. Plot of the decision hyperplane with uncertainty in the SU channel
coefficients, with N=2, Nr=1, Nt=1, statistical variation matrix A=D(1,
0.25), and h1 and h2 are fading channel coefficients of the cooperating users.

estimate ĥ as,

h ∈
{
ĥ+Au | ∥u∥ ≤ 1

}
, (5)

where the true channel coefficient h lies in an NNr dimen-
sional uncertainty ellipsoid centered at ĥ and the vector u∈
CNNr×1 is such that ∥u∥2≤1. The matrix A∈CNNr×NNr

describes the statistical uncertainty in h. As the N pairs of
cooperating SUs can have different estimation accuracies, it
is appropriate to model the channel estimation error as an
ellipsoidal uncertainty set. This is a standard model employed
to characterise CSI uncertainty and is described in detail in
[8]. Note that this is a more general model compared to the
restrictive spherical uncertainty employed in works such as [9],
[10]. The framework to characterize the radius of uncertainty,
i.e. matrix A for any general estimator based on the Chebyshev
bounding probability is given in [11]. For example, consider
the scenario shown in Fig. 1 with N=2 SUs each having
Nr=1 receive antenna and Nt=1 transmit antenna. Consider-
ing the channel uncertainty described in (5), the true channel
coefficients h1, h2 lie in an uncertainty ellipsoid centered at
the nominal channel estimates ĥ1, ĥ2 corresponding to the two
SUs. The statistical uncertainty matrix A=D(1, 0.25), where
D denotes a diagonal matrix, implying that the estimate of h2

has a greater reliability compared to the estimate of h1. Hence
the optimal decision hyperplane is the one that maximally
separates the two ellipsoids as illustrated in Fig. 1. Next we
present a novel framework for CSI uncertainty based optimal
detection in cooperative spectrum sensing scenarios.

III. ROBUST DETECTION WITH CSI UNCERTAINTY

Based on the above description of the adverse wireless
detection scenario, the optimal robust detector can thus be
naturally formulated to maximize the worst case distance
between the ellipsoidal uncertainty sets corresponding to the
two hypotheses. Hence the optimal decision hyperplane for
the MIMO CR cooperative spectrum sensing scenario can be
computed as the solution to the convex program,

minimize ∥w∥2
subject to max

∥u∥≤1
wH(ĥ0 +Au) + z ≤ −1 (6)

min
∥u∥≤1

wH(ĥ1 +Au) + z ≥ 1, (7)



where it can be seen that the constraints (6) and (7) in
the above optimization problem denote the worst case ellip-
soidal distance. Thus the optimal robust separating hyperplane
maximizes the worst case distance between the uncertainty
ellipsoids and depends significantly on the directional nature
of CSI reliability as shown in Fig. 1. Further, observing that
max∥u∥≤1(w

HAu) occurs when u= AHw
∥AHw∥ , the above robust

problem can be equivalently formulated as,

minimize ∥w∥2
subject to wH ĥ0 +

∥∥AHw
∥∥+ z ≤ −1

wH ĥ1 −
∥∥AHw

∥∥+ z ≥ 1 (8)

This paradigm for the robust hyperplane computation in non-
antipodal signalling scenarios can be readily recognized as
a SOCP [7]. Further, we describe below the closed form
expression for the optimal robust decision hyperplane based on
the above optimization framework. Consider ỹ(k) ∈ CNNr×1

defined as ỹ(k)=y(k)−Hp̄, where p̄=1
2 (p0+p1). Accord-

ingly, the equivalent received signal model at the fusion center
can be described from (2) as,

y (k)−Hp̄︸ ︷︷ ︸
ỹ(k)

= H (x (k)− p̄)︸ ︷︷ ︸
x̃(k)

+η (k) , (9)

where x̃ (k)=x (k)−p̄. The hypothesis points for the above
modified detection paradigm correspond to the vectors ±h de-
fined as h= 1

2H(p1−p0). Thus the framework for the optimal
robust detection described in (8) equivalently reduces to,

minimize ∥w∥2
subject to −wH ĥ+

∥∥AHw
∥∥+ z ≤ −1

wH ĥ−
∥∥AHw

∥∥+ z ≥ 1. (10)

From (9) it can be observed that the two NNr dimensional hy-
pothesis vectors are antipodal. Hence, the decision hyperplane
that optimally separates the two hypothesis vector is homo-
geneous, i.e. z = 0 in (10). Thus the two constraints in the
above framework are identical. Hence the above optimization
problem for robust cooperative spectrum sensing can be recast
as the equivalent symmetric SOCP,

minimize ∥w∥2
subject to wH ĥ−

∥∥AHw
∥∥ ≥ 1. (11)

The standard lagrangian cost function L(w, µ) for the above
optimization problem can be formulated as,

L(w, µ) = ∥w∥2 + µ
(∥∥AHw

∥∥2 − (wH ĥ− 1)2
)

= wH (I+ µP)w + 2µwH ĥ− µ, (12)

where P=AAH−ĥĥH . As demonstrated in [8], from the
KKT conditions for the above convex optimization problem,
the optimal value of the Lagrange multiplier µopt can be
computed as the zero of the scalar secular equation given as,

f(µ) = µ2
NNr∑
i=1

ĥ2
i pi

(1 + µpi)
2 − 2µ

NNr∑
i=1

ĥ2
i

(1 + µpi)
− 1, (13)

where pi∈Rn are the diagonal elements of P and the vector
ĥ=[ĥT

1 , ĥ
T
2 , . . . , ĥ

T
NNr

]T . On computing the Lagrange multi-
plier µopt that satisfies f(µopt)=0, the optimum wopt corre-
sponding to the robust hyperplane that maximally separates
the ellipsoidal uncertainty sets can be derived as,

wopt = −µopt(I+ µoptP)−1ĥ. (14)

Next we present the allied framework of RRD and MRD.

A. Relaxed and Multicriterion Robust Detection

In low SNR and deep fade scenarios, the hypothesis ellip-
soids potentially overlap and thus can not be strictly separated
by a decision hyperplane. In such scenarios one can modify the
robust detection paradigm to compute the optimal hyperplane
that minimizes the size of the set of misclassified points
through relaxed robust discrimination (RRD) as discussed in
[7, Section 8.6.1], which can be formulated as,

minimize b

subject to wH ĥ0 +
∥∥AHw

∥∥+ z ≤ −1 + b

wH ĥ1 −
∥∥AHw

∥∥+ z ≥ 1− b

b ≥ 0, (15)

where b, is the non-negative slack variable and denotes the
measure of constraint violation. This can be readily seen as
a SOCP that yields a relaxed optimal detector for cooperative
spectrum sensing applications. A multicriterion robust detector
(MRD), which employs a trade-off between the worst case
ellipsoidal separation and the constraint violation can be
formulated as,

minimize ∥w∥2 + λb

subject to wH ĥ0 +
∥∥AHw

∥∥+ z ≤ −1 + b

wH ĥ1 −
∥∥AHw

∥∥+ z ≥ 1− b

b ≥ 0, (16)

where λ is a non-negative weighing parameter. In the next sec-
tion we present simulation results to validate the performance
of the proposed robust PU detection schemes.

IV. SIMULATION RESULTS

We consider a 2×2 MIMO scenario, i.e. each CR user has
Nr=2 receive antennas and the PU base station has Nt=2
transmit antennas with N=2 SUs. We consider the transmis-
sion of beacons p0=[0, 0]T and p1=[

√
2,
√
2]T corresponding

to the absence and presence of PU respectively. Our simulation
setup incorporates different levels of CSI uncertainty, which
are characterized by the uncertainty matrices Ai=UDiU

T ,
where U is a random unitary matrix, and the diagonal
matrix Di=D (di), where di∈RNNr×1. The modelling of
such ellipsoids is discussed in detail [8], [12]. In Fig. 2(a)
we compare the detection error performance of the robust
detector (8) for cooperative spectrum sensing with the nominal
channel estimate based matched filter (MF Nominal) detector
and the genie aided true channel coefficient based matched
filter (MF Genie) detector considering different levels of CSI



0 2 4 6 8 10
10

−5

10
−4

10
−3

10
−2

SNR, dB

P
ro

ba
bi

lit
y 

of
 e

rr
or

 (P
e)

 

 

MF (Nominal), D
1

RD, D
1

MF (Nominal), D
3

RD, D
3

MF (Genie), D
3

MF (Nominal), D
4

RD, D
4

MF (Genie), D
4

MF (Genie), D
1

(a)

0 2 4 6 8 10
10

−4

10
−3

10
−2

SNR, dB

P
ro

b
a

b
ili

ty
 o

f 
e

rr
o

r 
(P

e
)

 

 

MF (Nominal), D
1

MRD, λ=3.5
MRD, λ=3.8
MRD, λ=4
RD, D

1

RRD, D
1

(b)

0 2 4 6

10
−4

10
−3

SNR, dB

Pr
ob

ab
ilit

y 
of

 e
rro

r (
P

e)

 

 

Theory, D
1

RD, D
1

Theory, D
2

RD, D
2

Theory, D
3

RD, D
3

Theory, D
4

RD, D
4

(c)
Fig. 2. (a) Comparison between the nominal estimate based matched filter (MF Nominal), genie aided matched filter (MF Genie) and robust detector (RD),
(b) Comparison between MF, RD, relaxed robust detector (RRD) and multicriterion robust detector (MRD), (c) Comparison between RD and closed form
solution, for Nr=2, Nt=2 MIMO, N=2, p0=[0, 0]T , p1=[

√
2,

√
2]T , D1=D (1.6, 1.4, 1.2, 1), D2=D (1.28, 1.12, 0.98, 0.8), D3=D (0.8, 0.7, 0.6, 0.5)

and D4=D (0.32, 0.28, 0.24, 0.2).
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Fig. 3. Probability of detection vs. probability of false alarm comparison
between the nominal estimate based matched filter (MF Nominal), genie aided
matched filter (MF Genie), robust detector (RD) and relaxed robust detector
(RRD) for Nr=2, Nt=2 MIMO, N=2, p0=[0, 0]T , p1=[
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√
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uncertainty. It is evident from the results that the robust de-
tector significantly outperforms the nominal channel estimate
based matched filter detector and further the performance
gap between the competing detectors progressively increases
with the increase in uncertainty. In Fig. 2(b) we compare
the detection performance of the proposed robust detector
with that of the related relaxed robust detection (RRD) and
multicriterion robust detection (MRD) schemes introduced in
(15) and (16) respectively. It can be seen from the figure that
RRD has a performance edge over the robust detector while
significantly outperforming the conventional matched filter
detector. It can also be seen that the MRD has a performance
similar to that of the robust detector. From Fig. 2(c) it can
be observed that the performance of the robust detector in
(8) employing the CVX solver [13] is in close agreement
with that obtained from the closed form solution in (14).
Finally in Fig. 3 we plot the probability of detection (PD)
vs. probability of false alarm (PFA). From the figure it can
be observed that both the robust detector and the relaxed robust
detector have a superior performance compared to the nominal
channel estimate based matched filter detector and it can also
be observed that they are close to the performance of the true
channel coefficient based genie aided matched filter detector.

V. CONCLUSION

In this paper we have developed novel techniques for
cooperative spectrum sensing in non-antipodal MIMO CR

scenarios. We proposed a robust detector for soft-decision
based cooperative spectrum sensing which considers the chan-
nel uncertainty. It has been demonstrated that the worst case
detection error minimization in the above scenario can be
formulated as a SOCP. We further derived a closed form
expression for the optimal robust detector based on reducing
the above optimization problem to a symmetric SOCP. The
proposed uncertainty aware robust detector and the associated
RRD and MRD schemes described in this work have been
demonstrated to yield superior performance compared to the
conventional matched filter detector for CR spectrum sensing.
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